[张贴报告]As(III) adsorption on Fe-Mn binary oxides: are Fe and Mn oxides synergistic or antagonistic for arsenic removal?

As(III) adsorption on Fe-Mn binary oxides: are Fe and Mn oxides synergistic or antagonistic for arsenic removal?
编号:11 访问权限:仅限参会人 更新:2021-09-23 20:08:01 浏览:226次 张贴报告

报告开始:暂无开始时间 (Asia/Shanghai)

报告时间:暂无持续时间

所在会议:[暂无会议] » [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
 Fe-Mn binary oxides are ubiquitous in the natural environment and have attracted increasing interest due to their high removal capacity for As(III), as well as their important role in the natural cycling of arsenic. Although numerous studies have characterized the respective roles of Fe and Mn oxides in As(III) removal, the working relationship between Fe and Mn oxides in different Fe-Mn binary oxides for As(III) removal has not been fully explored. In this study, three Fe-Mn binary oxides containing either ferrihydrite, hematite or goethite, were used to evaluate their adsorption capacities for As(III) in comparison with their corresponding single Fe and Mn oxide forms. The dynamics and speciation transformation of As(III) within mixed Fe and Mn oxides systems were investigated by using spectroscopic techniques of in situ flow ATR-FTIR and XPS combined with a Donnan reactor, where Fe and Mn oxides were isolated by a semi-permeable membrane through which arsenic could pass. The result showed that the synergistic effect, as well as antagonistic effects, between Fe and Mn oxides, was present in Fe-Mn binary oxides for As(III) removal. An obvious increase in As(III) removal by hematite containing Fe-Mn binary oxide, and a decrease by ferrihydrite containing Fe-Mn binary oxide, was attributed to As(III) oxidation mediated by Mn oxide as well as the difference in arsenic adsorption affinity in Fe oxides.
 
关键字
Arsenite; Adsorption; Iron oxide; Manganese oxide; Binary oxides.
报告人
郑倩
博士研究生 华中农业大学

郑倩,华中农业大学资源与环境学院,博士研究生,主要研究方向为土壤重金属污染修复、土壤活性组分界面耦合过程。

发表评论
验证码 看不清楚,更换一张
全部评论

联系我们

唐 嘉

邮件:tangjia@issas.ac.cn

电话:025-86881126

手机:18811797001

李秀华

邮件:xhli@issas.ac.cn

电话:025-86881126

手机:13601461377

扫码关注公众号

登录 创建账号 注册缴费 提交论文